$\mathrm{Cd}-\mathrm{Cl}$ distances fall into two categories; for Cl atoms which are shared between two Cd atoms $\mathrm{Cd}-\mathrm{Cl}$ ranges from $2 \cdot 535$ (7) to $2 \cdot 586$ (7) \AA and for those which are shared by three Cd atoms $\mathrm{Cd}-\mathrm{Cl}$ ranges from 2.629 (7) to 2.759 (6) \AA. $\mathrm{Cd}-\mathrm{O}$ (water) is $2 \cdot 50$ (4) \AA which is longer than the $\mathrm{Cd}-\mathrm{O}$ (water) distances of $2.356(4) \AA$ found in $\mathrm{Cd}_{2} \mathrm{NiCl}_{6} .12 \mathrm{H}_{2} \mathrm{O}$ (Leclaire \& Borel, 1980a) and $2 \cdot 328$ (4) \AA in $\mathrm{Cd}_{4} \mathrm{NiCl}_{10} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Leclaire \& Borel, 1980b). There is no $\mathrm{Cl}-\mathrm{O}$ (water) distance less than $3.5 \AA$ so the water molecule is assumed not to form hydrogen bonds to Cl atoms. The $\left(\mathrm{CdCl}_{6}\right)$ and $\left[\mathrm{CdCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ octahedra are distorted so that all $\mathrm{Cl}-\mathrm{Cd}-\mathrm{Cl}$ angles in $\mathrm{Cd}>\mathrm{Cl}$ units are less than 90°

[83.3 (2) to $\left.86 \cdot 8(2)^{\circ}\right]$.

The structure was solved and refined assuming the space group Pnma which implies that the crown is on a mirror plane. The unusual geometry of the crown, e.g. the abnormally short $C(8)-C\left(8^{i i}\right)$ distance, and especially the unusual torsion angles, notably all $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ being close to zero, suggest that the crown is disordered. This is also indicated by the large 'thermal' parameters. Attempts at untangling the disorder by replacing the anisotropic atoms by pairs of isotropic atoms and trying to fit two crowns to these new positions were unsuccessful. The 3:1 adduct of CdCl_{2} with 15 C 5 exhibits a radiationinduced phase transition (Hazell, Hazell, Holm \& Krogh, 1991) where the crown becomes disordered and the structure becomes centrosymmetric, a similar effect could occur in the $4: 1$ complex, which also suffers from radiation damage, but the change here from $P n 2_{1} a$ to Pnma would not be as easy to detect since the space-group absences would remain unchanged. Also there was no broadening of the peaks as was observed for the $3: 1$ adduct.

The O atoms of the crown ether are strongly bonded to Cd , the $\mathrm{Cd}-\mathrm{O}$ distances range from 2.44 (2) to 2.53 (2) \AA, which is longer than those in the 3:1 adduct of CdCl_{2} and 15C5 [2.22 (2) to $2 \cdot 38(2) \AA$] where the cadmium is at the centre of the crown (Hazell, Hazell, Holm \& Krogh, 1991) but considerably shorter than those in the 18 -crown-6 compound (Paige \& Richardson, 1984).

We are indebted to the Carlsberg Foundation and to the Danish Science Research Council for the diffractometer.

References

Brasseur, H. \& Pauling, L. (1938). J. Am. Chem. Soc. 60, 2886-2890.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). OrfLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). OrfFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Hazell, A. C. \& Hazell, R. G. (1990). Acta Cryst. A46, C-219.
Hazell, A., Hazell, R. G., Holm, M. F. \& Krogh, L. (1991). Acta Cryst. Submitted.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Leclaire, A. \& Borel, M. M. (1980a). Acta Cryst. B36, 30883090.

Leclaire, A. \& Borel, M. M. (1980b). Acta Cryst. B36, 30903093.

Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nelmes, R. J. (1975). Acta Cryst. A31, 273-279.
Paige, C. R. \& Richardson, M. F. (1984). Can. J. Chem. 62, 332-335.
Wulfsberg, G. \& Weiss, A. (1977). J. Chem. Soc. Dalton Trans. pp. 1640-1649.

Acta Cryst. (1991). C47, 732-737

Structures of trans- $\left[\mathrm{TcCl}_{4}\left\{\mathbf{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}_{2}\right],\left[\mathrm{TcCl}_{4}\left\{\mathbf{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2}\right]$ and $\left[\mathbf{P}\left(\mathrm{C}_{2} \mathbf{H}_{5}\right)_{3} \mathrm{H}\right]\left[\mathrm{TcCl}_{5}\left\{\mathbf{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}\right]$

By Fernande D. Rochon, ${ }^{*}$ Robert Melanson and Pi-Chang Kong
Département de chimie, Université du Québec à Montréal, CP 8888, Succ. A, Montréal, Québec, Canada H3C 3P8

(Received 21 June 1990; accepted 18 September 1990)

Abstract

Tetrachlorobis(methyldiphenylphosphine)technetium, (I), $M_{r}=641 \cdot 16$, triclinic, $P \overline{1}, a=$

[^0]0108-2701/91/040732-06\$03.00

$8.991(5)$,	$b=9.603(4)$,	$c=9.750(6) \AA$,
$66.67(4)$,	$\alpha=88.65(4)$,	$\gamma=62.80(4)^{\circ}$,

$674.6(6) \AA^{3}, Z=1, D_{x}=1.573 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ (Мо $K \alpha)$ $=0.71069 \AA, \quad \mu=1.04 \mathrm{~mm}^{-1}, \quad F(000)=323, \quad T=$
(c) 1991 International Union of Crystallography

295 K and $R=0.039$ for 2441 observed reflections. The Tc atom is located on an inversion centre. The Tc- P distances are 2.556 (1) \AA while the $\mathrm{Tc}-\mathrm{Cl}$ bonds are $2 \cdot 324(1)$ and $2 \cdot 320(1) \AA$. trans-Tetrachlorobis(triethylphosphine)technetium, (II), $M_{r}=$ 447.04, monoclinic, $\quad P 2_{1} / c, \quad a=8.295$ (2), $\quad b=$ 12.766 (3), $\quad c=11.831$ (3) $\AA, \quad \beta=123.35$ (2) ${ }^{\circ}, \quad V=$ $1046 \cdot 5$ (4) $\AA^{3}, Z=2, D_{x}=1.517 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \alpha)$ $=0.71069 \AA, \mu=1.328 \mathrm{~mm}^{-1}, \quad F(000)=486, \quad T=$ 295 K and $R=0.029$ for 2509 observed reflections. The Tc atom is located on an inversion centre. The $\mathrm{Tc}-\mathrm{P}$ distance is 2.541 (1) \AA while the $\mathrm{Tc}-\mathrm{Cl}$ bonds are 2.334 (1) and 2.331 (1) \AA. Triethylphosphonium pentachloro(triethylphosphine)technetate, (III), M_{r} $=513 \cdot 50$, orthorhombic, $P c a 2_{1}, a=19 \cdot 456$ (20), $b=$ $10 \cdot 223$ (6), $c=22.833$ (12) $\AA, V=4541$ (6) $\AA^{3}, Z=8$, $D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $1.33 \mathrm{~mm}^{-1}, F(000)=2088, T=295 \mathrm{~K}$ and $R=0.086$ for 2000 observed reflections. There are two independent Tc atoms in the unit cell. The $\mathrm{Tc}-\mathrm{Cl}$ bonds located in trans positions to the phosphine ligand are 2.414 (9) and 2.365 (8) \AA while the cis bonds vary from $2 \cdot 319$ (9) to $2 \cdot 360$ (8) \AA. The Tc-P bond distances are 2.493 (8) and 2.499 (8) \AA.

Introduction. The chemistry of technetium has recently become very important, especially in relation to the use of the isotope 99 m in nuclear medicine as organ-imaging agents. The quantity of ${ }^{99 m} \mathrm{Tc}$ needed in radiopharmacy is a few nanograms and for this reason its toxicity is negligible. It is therefore an ideal nucleus for diagnostic studies in nuclear medicine. It has been used for several years for bone scanning and recently it has been used to study the heart, the brain, the kidneys, the liver and other organs and also tumour tissue. A good review on medical diagnostic imaging with complexes of ${ }^{99 m} \mathrm{Tc}$ has been published by Clarke \& Podbielski (1987).

We have recently started a project on the synthesis of new technetium compounds, especially mixedligand complexes. We have prepared several phosphine compounds as starting material for these syntheses. Since small quantities of reactants are used in the reactions, X-ray diffraction is an excellent method of characterizing the Tc compounds when adequate crystals can be prepared. We have recently reported a study of the reactions of $\mathrm{NH}_{4} \mathrm{TcO}_{4}$ with triphenylphosphine in different conditions (Rochon, Melanson \& Kong, 1991). We have now prepared some complexes with less bulky phosphines. The crystal structures of three of these compounds are reported below. These $\mathrm{Tc}^{\mathrm{IV}}$ compounds are trans$\mathrm{Tc}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \mathrm{Cl}_{4}$ (I), trans- $\mathrm{Tc}\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{Cl}_{4}$ (II) and $\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{H}\right]\left[\mathrm{Tc}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{Cl}_{5}\right] \text { (III). }}\right.\right.$

Experimental. Ammonium pertechnetate $\left(\mathrm{NH}_{4}-\right.$ ${ }^{99} \mathrm{TcO}_{4}$) was obtained from Oak Ridge National

Laboratory. It was recrystallized in nitric acid (caution: ammonium pertechnetate in acid medium will produce a radioactive volatile compound) and dissolved in water. A $0.286 M$ solution was prepared. All manipulations were made in a laboratory approved for low-level radioactive material $\left({ }^{99} \mathrm{Tc}\right.$ is a β-emitter with a particle energy of 0.292 MeV and a half-life of $2.13 \times 10^{5} \mathrm{y}$). Triethylphosphine and methyldiphenylphosphine were bought from Aldrich.

The magnetic susceptibility measurements of the Tc compounds were performed by the Faraday method on a Cahn instrument equipped with a millibalance. Corrections were made for diamagnetism. The infrared spectra were measured in the solid state as Nujol mull on a FT-50 Digilab instrument equipped with a CsI beamsplitter.
(I). This compound was prepared by a method similar to the one described earlier by Mazzi, de Paoli, di Bernardo \& Magon (1976). 1 ml of ammonium pertechnetate $(0.286 \mathrm{M})$ was added to a solution containing 1 ml of conc. HCl and 15 ml of ethanol. The solution became yellow immediately. Methyldiphenylphosphine (0.5 ml) was added and the mixture was stirred overnight at room temperature. The next day, the solution was refluxed for 15 \min and cooled to room temperature. The green precipitate was collected by filtration and the compound was washed twice with ethanol and dried in air. The compound was recrystallized in chloroform and green crystals suitable for diffraction methods were obtained. (I) yield $\approx 60 \%$. IR (cm^{-1}): $v(\mathrm{Tc}-\mathrm{Cl}), 346$; main other bands: 888, 740, 629, 503 and 447. Magnetic moment $\mu=4 \cdot 1$ BM ($3 \cdot 802 \times$ $10^{-23} \mathrm{JT}^{-1}$).
(II) and (III). 2 ml of ammonium pertechnetate (0.286 M) were added to a solution containing 4 ml of conc. HCl and 25 ml of ethanol. Triethylphosphine (3 ml) was added and the mixture was refluxed for 2 h . The mixture was left standing overnight at room temperature. The next day, there was a precipitate of yellow and green crystals. The precipitate was collected by filtration and washed several times with an ethanol- HCl solution (10 ml of ethanol and 3 ml 6 MHCl). The compound was dried in air and ether added. The green compound dissolved but the yellow compound is insoluble in the ether. The green complex (II) was recrystallized in ether, while the yellow compound (III) was recrystallized in benzene. (II) yield $\approx 20 \%$, IR (cm^{-1}): $\nu(\mathrm{Tc}-\mathrm{Cl}) 338$; main other bands, 1414, 1258, 1035, 758, 725, 704 and 240; (III) yield $\approx 50 \%$, IR $\left(\mathrm{cm}^{-1}\right): \nu(\mathrm{Tc}-\mathrm{Cl}) 330$ and 284; main other bands, 1400, 1260, 1036, 874, 760 and 723.

Crystallographic measurements and structure resolution. The three crystals (I), (II) and (III) were selected after examination under a polarizing microscope for homogeneity. The unit-cell parameters

Table 1. Experimental details of the X-ray studies of (I), (II) and (III)

	(I)	(II)	(III)
Formula	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{P}_{2} \mathrm{Tc}$	$\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{4} \mathrm{P}_{2} \mathrm{Tc}$	$\mathrm{C}_{12} \mathrm{H}_{31} \mathrm{Cl}_{5} \mathrm{P}_{2} \mathrm{Tc}$
Crystal size (mm)	$0.35 \times 0.24 \times 0.18$	$0.52 \times 0.40 \times 0.21$	$0.49 \times 0.49 \times 0.08$
2θ max (${ }^{\circ}$)	55	60	60
Quadrants	$h \pm k \pm l$	$h, k, \pm l$	h, k, l.
h, k, l	$0 \rightarrow 11 l,-12 \rightarrow 12,-12 \rightarrow 12$	$0 \rightarrow 11,0 \rightarrow 17,-13 \rightarrow 13$	$0 \rightarrow 27,0 \rightarrow 14,0 \rightarrow 32$
Scan technique	$2 \theta / \theta$	$2 \theta / \theta$	$2 \boldsymbol{\theta} / \mathrm{\theta}$
Standard reflections, variation (\%)	014, 14T, 403, 2	1, 10, 0, 106, 402, 2	440,128, 2
No. of independent reflections	3328	3398	6810
No. of observed reflections	2441, $I_{\text {net }}>2 \cdot 5 \sigma$	2509, $I_{\text {ret }}>2 \cdot 6 \sigma$	$2000, I_{\text {net }}>2 \cdot 5 \sigma$
Max, shift/e.s.d.	$0 \cdot 1$	0.02	0.6
Min., max. $\Delta \rho\left(\mathrm{e} \AA^{-3}\right.$)	-0.25, 0.55	-0.42, 0.56	$-0.50,+0.71$
Standard deviation (unit weight)	1.68	1.07	$2 \cdot 4$

were obtained by least-squares refinement of the angles $2 \theta, \omega$ and χ for 15 well centred reflections on a Syntex $P \overline{1}$ diffractometer using graphitemonochromatized Mo $K \alpha$ radiation. Crystal data and other information are summarized in Table 1.* Scan rates and data treatment have already been described (Melanson \& Rochon, 1975). Corrections were made for Lorentz-polarization effects and the anomalous-dispersion terms of Tc, P and Cl were included in the calculations (Cromer, 1965).

The coordinates of the Tc atom in the three crystals were determined from the three-dimensional Patterson map and the positions of all the other non-H atoms were found by the usual Fourier methods. The centrosymmetric group Pbcm (No. 57) was first assumed for (III), but the structure could not be refined. The refinement with space group $P c a 2_{1}$ (No. 29) was normal except for high thermal factors especially for the light atoms. The coordinates and isotropic thermal factors of the H atoms were refined for (I), while for (II) the coordinates of the H atoms were fixed at their calculated position with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and isotropic thermal factors fixed at 1.2 times the equivalent isotropic U of the C atom to which it is bonded. For (III), some H atoms could be located, others were calculated. They were fixed at their calculated positions with $U_{\text {eq }}=$ $0.076 \AA^{2}$. For the methyl H atoms, at least one H was obtained from the difference Fourier map and the positions of the remaining atoms were calculated. Individual weights $w=1 / \sigma^{2}(F)$ were applied. The refinement of the scale factor, coordinates and anisotropic temperature factors of all the non- H atoms converged to $R=0.039$ and $w R=0.036$ for (I), to R $=0.029$ and $w R=0.028$ for (II), and to $R=0.086$ and $w R=0.073$ for (III). The high residual R factors for (III) are caused by the high thermal motion of

[^1]the atoms. There were a few residual peaks $[<0.55$ for (I), <0.56 for (II) and <0.7 e \AA^{-3} for (III)] in the close environment of the Tc atom.

The scattering curves of Cromer \& Waber (1965) were used except for the H atoms (Stewart, Davidson \& Simpson, 1965). The calculations were carried out on a Nicolet SHELXTL (Sheldrick, 1981) system for (I) and (II) and on a Cyber 830 computer for (III) with programs already described (Melanson \& Rochon, 1975).

Discussion. We synthesized the two green $\mathrm{Tc}^{\mathrm{rv}}$ compounds trans- $\mathrm{Tc}\left(\mathrm{P} R_{3}\right)_{2} \mathrm{Cl}_{4}$ according to a method similar to the one described by Mazzi et al. (1976). These compounds were prepared by the reaction of $\mathrm{NH}_{4} \mathrm{TcO}_{4}$ with $\mathrm{P} R_{3}$ in ethanol in the presence of HCl . In a 1 to 5 ratio, the green disubstituted $\mathrm{Tc}^{\mathrm{IV}}$ compounds were prepared by these authors with dimethylphenylphosphine, diethylphenylphosphine and triphenylphosphine, while using a 1 to 15 ratio, the yellow-orange trisubstituted $\mathrm{Tc}^{\text {III }}$ complex was synthesized with ligands less bulky than PPh_{3}. In these reactions, $\mathrm{P} R_{3}$ acts as the reducing agent. We have observed similar reactions with methyldiphenylphosphine, but using triethylphosphine, we have observed mainly two products, the green disubstituted compound and the yellow ionic complex $\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{H}\right]\left[\mathrm{Tc}\left\{\mathrm{P}_{(}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\}_{2} \mathrm{Cl}_{4}\right]$.
trans $-\mathrm{Tc}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2} \mathrm{Cl}_{4}$ (I). As expected, this green compound is the trans isomer. The magnetic susceptibility measurement confirmed that it was a d^{3} $\mathrm{Tc}^{\mathrm{IV}}$ compound with three unpaired electrons ($\mu=$ $4.1 \mathrm{BM} ; 3.802 \times 10^{-23} \mathrm{JT}^{-1}$). The space group of (I) is $P \overline{1}$ with one molecule per unit cell. The refined atomic parameters of the structure are listed in Table 2. A labelled diagram of the molecule is shown in Fig. 1. The Tc atom is located on the inversion centre.

The bond distances and angles are shown in Table 3. The distances $\mathrm{Tc}-\mathrm{Cl}$ are 2.324 (1) and $2 \cdot 320$ (1) \AA, very close to the values observed in the literature for trans $\mathrm{Tc}-\mathrm{Cl}$ bonds (Pearstein, Davis, Jones \& Davison, 1989; Rochon, Melanson \& Kong, 1991; Bandoli, Clemente \& Mazzi, 1976). Tc-P is

Table 2. Positional parameters $\left(\times 10^{4}\right)$ with their e.s.d.'s and isotropic temperature factors $\left(\times 10^{4}\right)$

(II)				
Tc	0	0	0	295
$\mathrm{Cl}(1)$	2391 (1)	-1163 (1)	1517 (1)	453
$\mathrm{Cl}(2)$	-2226 (1)	-879 (1)	275 (1)	455
P	816 (1)	1155 (1)	1997 (1)	325
C(1)	1034 (4)	411 (2)	3390 (2)	461
C(2)	1527 (5)	1052 (3)	4632 (3)	644
C(3)	3062 (3)	1890 (2)	2714 (3)	450
C(4)	4892 (4)	1224 (3)	3415 (3)	587
C(5)	-959 (3)	2177 (2)	1598 (3)	441
C(6)	-2934 (4)	1789 (3)	1215 (3)	589
(III)				
$\mathrm{Tc}(1)$	2266 (1)	-277 (2)	2000	455
$\mathrm{Tc}(2)$	4743 (1)	4785 (2)	4526 (1)	465
$\mathrm{Cl}(1)$	2210 (5)	-418 (10)	3054 (4)	963
$\mathrm{Cl}(2)$	3353 (4)	- 1302 (8)	1985 (4)	729
$\mathrm{Cl}(3)$	2799 (5)	1774 (7)	2044 (5)	848
$\mathrm{Cl}(4)$	1724 (4)	-2307 (8)	1895 (4)	739
$\mathrm{Cl}(5)$	1215 (4)	786 (8)	1946 (4)	726
$\mathrm{Cl}(6)$	3676 (4)	5852 (8)	4623 (4)	731
$\mathrm{Cl}(7)$	4160 (5)	2772 (7)	4593 (4)	727
$\mathrm{Cl}(8)$	5790 (4)	3686 (8)	4498 (4)	625
$\mathrm{Cl}(9)$	5331 (5)	6769 (8)	4594 (4)	828
$\mathrm{Cl}(10)$	4665 (5)	4874 (11)	3493 (3)	867
P(1)	2357 (5)	-238 (8)	911 (4)	536
P(2)	4845 (4)	4639 (7)	5616 (3)	433
P(3)	2317 (6)	4996 (10)	3483 (5)	874
$\mathbf{P}(4)$	4903 (4)	72 (8)	3100 (3)	451
C(1)	1646 (16)	178 (28)	527 (12)	535
C(2)	968 (17)	-828 (33)	562 (17)	858
C(3)	2611 (13)	-1877 (25)	600 (14)	517
C(4)	2742 (21)	- 1954 (37)	-40 (15)	1037
C(5)	2959 (15)	987 (30)	654 (13)	622
C(6)	3692 (17)	638 (27)	776 (16)	712
C(7)	3978 (16)	5100 (26)	6000 (11)	577
C(8)	3395 (14)	4250 (27)	5949 (13)	489
C(9)	5080 (15)	2958 (27)	5866 (14)	615
C(10)	5166 (15)	2974 (31)	6548 (14)	670

Table 2 (cont.)

Fig. 1. Labelled diagram of trans- $\mathrm{Tc}\left(\mathrm{P}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right)_{2} \mathrm{Cl}_{4}(\mathrm{I})$.
$2 \cdot 556$ (1) \AA. This value is close to the one [$2 \cdot 525(2) \AA]$ observed in $\mathrm{TcCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})$, but longer than the ones observed for the $\mathrm{Tc}-\mathrm{P}$ bonds trans to each other in mer- $\mathrm{Tc}\left(\mathrm{Me}_{2} \mathrm{Ph}_{3} \mathrm{Cl}_{3}[2.46\right.$ (1)$2 \cdot 48$ (1) \AA; Bandoli et al. 1976] and in mer$\mathrm{Tc}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$ (DMF) [2.496 (5), 2.499 (5) \AA; Rochon et al., 1991]. The angles around Tc are close to the expected octahedral values. The P-C distances are normal and vary from 1.809 (4) to 1.826 (5) \AA while the angles around the P atoms are close to the tetrahedral value. The $\mathrm{Tc}-\mathrm{P}-\mathrm{C}$ angles are slightly larger $\left[110 \cdot 1(2)-116.1(1)^{\circ}\right]$ than the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ values $\left[103 \cdot 5(2)-106 \cdot 7(2)^{\circ}\right]$ as observed in $\mathrm{Tc}\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{2}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right]_{3} \mathrm{Cl}_{3}$ (Bandoli et al., 1976) and in $\left[\mathrm{Tc}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{Cl}_{5}\right]^{-}$(Bandoli, Clemente, Mazzi \& Roncari, 1982; Rochon et al., 1991). The average C-C distance in the phenyl rings is 1.380 (7) \AA. The H atoms were refined isotropically. The average $\mathrm{C}-\mathrm{H}$ distance for the aromatic rings is $0.88(5) \AA$ and for the methyl groups 0.92 (6) \AA. The average $\mathrm{P}-\mathrm{C}(1)-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}(1)-\mathrm{H}$ angles in the methyl group are 107 (3) and 111 (5) ${ }^{\circ}$ respectively.

The packing of the molecules in the crystal is shown in Fig. 2. No hydrogen bonding is expected in this crystal. The different layers are held together only by van der Waals forces.
trans $\left.-\mathrm{Tc}\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\right)_{3}\right]_{2} \mathrm{Cl}_{4}$ (II). The structure of this compound is very similar to the one described above.

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ (I)

$\mathrm{T}-\mathrm{Cl}(1) \quad 2$	2.324 (1)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.36$	362 (8)
$\mathrm{P}-\mathrm{C}(1)$	1.815 (4)	$\mathrm{C}(21)-\mathrm{C}(26) \quad 1.39$	(5)
$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	1.392 (5)	$\mathrm{C}(24)-\mathrm{C}(25) \quad 1 \cdot 3$	381 (9)
$\mathrm{C}(13)-\mathrm{C}(14) \quad 1$	1.349 (9)	Tc-P 2.3	556 (1)
$\mathrm{C}(21)-\mathrm{C}(22) \quad 1$	1.390 (7)	$\mathrm{P}-\mathrm{C}(21) \quad 1.80$	809 (4)
$\mathrm{C}(23)-\mathrm{C}(24) \quad 1$	1.364 (6)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.3$	(10)
$\mathrm{T}-\mathrm{Cl}(2) \quad 2$	$2 \cdot 320$ (1)	$\mathrm{C}(15)-\mathrm{C}(16) \quad 1.392$	(10)
$\mathrm{P}-\mathrm{C}(11) \quad 1$	1.826 (5)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1.38$	(389 (7)
$\mathrm{C}(11)-\mathrm{C}(16) \quad 1$	1.387 (7)	$\mathrm{C}(25)-\mathrm{C}(26) \quad 1.37$	(6)
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{Cl}(2)$	$90 \cdot 2$ (1)	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	$105 \cdot 9$ (2)
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{P}^{\prime}$	92.7 (1)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	120.1 (7)
$\mathrm{T}-\mathrm{P}-\mathrm{C}(21)$	113.6 (1)	$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$118 \cdot 3$ (5)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	$122 \cdot 3$ (3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.4 (5)
$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(21)$	106.7 (2)	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	119.0 (4)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	(4) $121.0(5)$	$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{P}$	87.3 (1)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	1) 120.1 (5)	$\mathrm{Tc}-\mathrm{P}-\mathrm{C}(11)$	116.1 (1)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	(24) 120.3 (5)	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	122.4 (4)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$) $120 \cdot 5(5)$	$\mathrm{C}(1)-\mathrm{P}-\mathrm{C}(11)$	$103 \cdot 5$ (2)
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{P}$	90.5 (1)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120 \cdot 0$ (5)
$\mathrm{T}-\mathrm{P}-\mathrm{C}(1)$	110.1 (1)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 6$ (6)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$119 \cdot 3$ (4)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.0 (4)
$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	118.7 (4)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119.9 (4)

(II)

$\mathrm{T}-\mathrm{Cl}(1)$	$2.334(1)$
$\mathrm{P}-\mathrm{C}(1)$	$1.822(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.539(4)$
$\mathrm{T}-\mathrm{Cl}(2)$	$2.331(1)$
$\mathrm{P}-\mathrm{C}(3)$	$1.826(3)$
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{Cl}(2)$	$89.4(1)$
$\mathrm{Cl}(2)-\mathrm{Tc}-\mathrm{P}^{\prime}$	$91.4(1)$
$\mathrm{T}-\mathrm{P}-\mathrm{C}(5)$	$114.2(1)$
$\mathrm{P}-\mathrm{C}(5)-\mathrm{C}(6)$	$115 \cdot 3(1)$
$\mathrm{Cl}(1)-\mathrm{Tc}-\mathrm{P}$	$88.5(1)$
$\mathrm{T}-\mathrm{P}-\mathrm{C}(1)$	$112.4(1)$
$\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(2)$	$115.5(2)$

(III)	
$\mathrm{Tc}(1)-\mathrm{Cl}(1)$	$2.414(9)$
$\mathrm{Tc}(1)-\mathrm{Cl}(4)$	$2.340(9)$
$\mathrm{Tc}(2) \mathrm{Cl}(6)$	$2.354(9)$
$\mathrm{Tc}(2)-\mathrm{Cl}(9)$	$2.334(9)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.69(3)$
$\mathrm{P}(2)-\mathrm{C}(7)$	$1.95(3)$
$\mathrm{P}(3)-\mathrm{C}(13)$	$1.59(5)$
$\mathrm{P}(4)-\mathrm{C}(19)$	$1.81(4)$
$\mathrm{Tc}(1)-\mathrm{Cl}(2)$	$2.360(8)$
$\mathrm{Tc}(1)-\mathrm{Cl}(5)$	$2.319(9)$
$\mathrm{Tc}(2)-\mathrm{Cl}(7)$	$2.354(8)$
$\mathrm{Tc}(2)-\mathrm{Cl}(10)$	$2.365(8)$

$\mathrm{Cl}(1)-\mathrm{Tc}(1)-\mathrm{Cl}(2)$	91.6 (3)	$\mathrm{Cl}(6)-\mathrm{Tc}(2)-\mathrm{P}(2)$	$90 \cdot 3$ (3)
$\mathrm{Cl}(1)-\mathrm{Tc}(1)-\mathrm{Cl}(5)$	92.4 (3)	$\mathrm{Cl}(7)-\mathrm{Tc}(2)-\mathrm{Cl}(10)$	93.9 (3)
$\mathrm{Cl}(2)-\mathrm{Tc}(1)-\mathrm{Cl}(4)$	90.5 (3)	$\mathrm{Cl}(8)-\mathrm{Tc}(2)-\mathrm{Cl}(10)$	$92 \cdot 7$ (3)
$\mathrm{Cl}(3)-\mathrm{Tc}(1)-\mathrm{Cl}(4)$	$176 \cdot 6$ (3)	$\mathrm{Cl}(9)-\mathrm{Tc}(2)-\mathrm{P}(2)$	87.0 (3)
$\mathrm{Cl}(4)-\mathrm{Tc}(1)-\mathrm{Cl}(5)$	90.8 (3)	$\mathrm{Tc}(1)-\mathrm{P}(1)-\mathrm{C}(3)$	112 (1)
$\mathrm{Cl}(6)-\mathrm{Tc}(2)-\mathrm{Cl}(7)$	88.6 (3)	$\mathrm{Tc}(2)-\mathrm{P}(2)-\mathrm{C}(9)$	112 (1)
$\mathrm{Cl}(6)-\mathrm{Tc}(2)-\mathrm{Cl}(10)$	$91 \cdot 1$ (3)	$\mathrm{Cl}(1)-\mathrm{Tc}(1)-\mathrm{Cl}(4)$	91.6 (3)
$\mathrm{Cl}(7)-\mathrm{Tc}(2)-\mathrm{Cl}(9)$	172.5 (3)	$\mathrm{Cl}(2)-\mathrm{Tc}(1)-\mathrm{Cl}(3)$	$90 \cdot 1$ (3)
$\mathrm{Cl}(8)-\mathrm{Tc}(2)-\mathrm{Cl}(9)$	89.5 (3)	$\mathrm{Cl}(2)-\mathrm{Tc}(1)-\mathrm{P}(1)$	86.0 (3)
$\mathrm{Cl}(9)-\mathrm{Tc}(2)-\mathrm{Cl}(10)$	$93 \cdot 6$ (3)	$\mathrm{Cl}(3)-\mathrm{Tc}(1)-\mathrm{P}(1)$	89.9 (3)
$\mathrm{Tc}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	118 (1)	$\mathrm{Cl}(5)-\mathrm{Tc}(1)-\mathrm{P}(1)$	$90 \cdot 1$ (3)
$\mathrm{Tc}(2)-\mathrm{P}(2)-\mathrm{C}(7)$	111 (1)	$\mathrm{Cl}(6)-\mathrm{Tc}(2)-\mathrm{Cl}(9)$	91.3 (3)
$\mathrm{Cl}(1)-\mathrm{Tc}(1)-\mathrm{Cl}(3)$	91.8 (3)	$\mathrm{Cl}(7)-\mathrm{Tc}(2)-\mathrm{Cl}(8)$	90.1 (3)
$\mathrm{Cl}(1)-\mathrm{Tc}(1)-\mathrm{P}(1)$	$177 \cdot 1$ (3)	$\mathrm{Cl}(7)-\mathrm{Tc}(2)-\mathrm{P}(2)$	85.5 (3)
$\mathrm{Cl}(2)-\mathrm{Tc}(1)-\mathrm{Cl}(5)$	$175 \cdot 8$ (3)	$\mathrm{Cl}(8)-\mathrm{Tc}(2)-\mathrm{P}(2)$	86.0 (3)
$\mathrm{Cl}(3)-\mathrm{Tc}(1)-\mathrm{Cl}(5)$	88.5 (3)	$\mathrm{Cl}(10)-\mathrm{Tc}(2)-\mathrm{P}(2)$	178.5 (3)
$\mathrm{Cl}(4)-\mathrm{Tc}(1)-\mathrm{P}(1)$	86.8 (3)	$\mathrm{Tc}(1)-\mathrm{P}(1)-\mathrm{C}(5)$	112 (1)
$\mathrm{Cl}(6)-\mathrm{Tc}(2)-\mathrm{Cl}(8)$	$176 \cdot 1$ (3)	$\mathrm{Tc}(2)-\mathrm{P}(2)-\mathrm{C}(11)$	114 (1)

The green crystals are monoclinic with space group $P 2{ }_{1} / c$. The Tc atom is located on an inversion centre resulting in a trans configuration of the complex. A labelled diagram of the compound is shown in Fig. 3.

The $\mathrm{Tc}-\mathrm{Cl}$ bond distances are $2.334(1)$ and 2.331 (1) \AA while the Tc-P bonds are $2 \cdot 541$ (1) \AA. These values are very similar to those observed in (I). The angles around the Tc atom are close to the expected octahedral values (Table 3). The $\mathrm{Tc}-\mathrm{P}-\mathrm{C}$ angles $\left[112.4(1)-114.3(1)^{\circ}\right]$ are slightly larger than the tetrahedral value while the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are slightly smaller [103.0(1)-106.1(1) ${ }^{\circ}$] as observed in the above crystal structure. The $\mathrm{P}-\mathrm{C}$ bond distances $[1.822(3)-1.826(3) \AA]$ and the $\mathrm{C}-\mathrm{C}$ bonds $[1.523$ (4)- 1.529 (4) $\AA]$ are normal. The terminal ethyl groups are slightly flattened as shown by the high $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles which vary from 115.0 (2) to 115.5 (2) ${ }^{\circ}$.

Fig. 2. Stereoscopic view of the unit cell in (I) (b axis vertical, down c^{*} axis).

Fig. 3. Labelled diagram of (II).

The packing of the molecules in the crystal is shown in Fig. 4. No hydrogen bond is expected in this type of compound. Therefore, the molecules are held together only by van der Waals forces.
$\left[\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{H}\right]\left[\mathrm{Tc}\left\{\mathrm{P}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right\} \mathrm{Cl}_{5}\right]$ (III). There are two independent Tc atoms in the unit cell. The bond distances and angles are listed in Table 3 (the data on the ethyl groups is part of the supplementary material). The two independent molecules are very similar. The $\mathrm{Tc}-\mathrm{Cl}$ bonds located in cis positions to the phosphine ligand vary from 2.319 (9) to $2 \cdot 360$ (8) \AA. The trans bond in one molecule seems significantly longer $[\mathrm{Tc}(1)-\mathrm{Cl}(1)=2.414$ (9) \AA], but is almost normal in the second molecule [$\mathrm{Tc}(2)-$ $\mathrm{Cl}(10)=2 \cdot 365(8) \AA]$. These values are very similar to those observed in $\left[\mathrm{PPh}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CO}-\right.$ $\left.\mathrm{CH}_{3}\right]^{+} .\left[\mathrm{Tc}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{5}\right]^{-}$described by Bandoli et al. (1982). The angles around the Tc atoms are close to the octahedral values. The average cis $\mathrm{Cl}-\mathrm{Tc}-\mathrm{Cl}$ angle is $91.1(3)^{\circ}$ while the average cis $\mathrm{Cl}-\mathrm{Tc}-\mathrm{P}$ angle is $87.7(3)^{\circ}$. The $\mathrm{Tc}-\mathrm{P}$ bond distances are $2 \cdot 493$ (8) and $2 \cdot 499$ (8) \AA, which are significantly shorter than the values observed in the two trans$\mathrm{Tc}\left(\mathrm{P} R_{3}\right)_{2} \mathrm{Cl}_{4}$ compounds [av. $2 \cdot 549$ (1) \AA] described above. It seems that the trans influence of phosphine ligands is larger than that of chloride. The observed

Fig. 4. Stereoscopic view of the packing in the unit cell for (II) (b axis vertical, down c^{*} axis).

Fig. 5. Stereoscopic view of the packing in the unit cell for (III) (c axis vertical, a axis horizontal).
$\mathrm{Tc}-\mathrm{P}$ distances agree well with the values observed in mer- $\mathrm{Tc}\left[\mathrm{P}_{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} \mathrm{Cl}_{3}$ (Bandoli et al., 1976).
The $\mathrm{P}-\mathrm{C}$ distances in the bonded ligands are 1.85 (3) \AA and the angles around the P atom are close to the tetrahedral value. The angles $\mathrm{Tc}-\mathrm{P}-\mathrm{C}$ are slightly larger [av. $113(1)^{\circ}$] than the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles [av. $105(1)^{\circ}$]. The average $\mathrm{C}-\mathrm{C}$ distance is 1.54 (4) \AA. The ethyl groups are slightly flattened as observed by the high $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles [av. $115(2)^{\circ}$].
The thermal factors of the atoms in the cation are very large resulting in high standard deviations on the bond distances and angles. The average bond distances and angles are: $\mathrm{P}-\mathrm{C}=1.71$ (5), $\mathrm{C}-\mathrm{C}=$ $1.54(5) \AA, \quad \mathrm{P}-\mathrm{C}-\mathrm{C}=115(3)$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}=$ 111 (2) ${ }^{\circ}$.

The presence of hydrogen bonding between the cations and the chloride ligands was investigated. The shortest $\mathrm{P} \cdots \mathrm{Cl}$ distances are 3.81 (1) and 3.77 (1) \AA, but the angles $\mathrm{C}-\mathrm{P} \cdots \mathrm{Cl}$ are not very favourable (75 and 158°). Therefore, hydrogen bonding is not an important stabilizing factor in this structure. The packing inside the unit cell is shown in Fig. 5. It consists of layers of cations and anions parallel to the $a b$ plane.

The IR spectrum of these yellow crystals showed two $\nu(\mathrm{Tc}-\mathrm{Cl})$ bands at 330 and $284 \mathrm{~cm}^{-1}$. For $\left[\mathrm{PPh}_{3} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{3}\right]^{+} .\left[\mathrm{Tc}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{5}\right]^{-}$ and $\left(\mathrm{PPh}_{3} \mathrm{H}\right)\left[\mathrm{Tc}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{5}\right]$ (Bandoli et al., 1982) two $\nu(\mathrm{Tc}-\mathrm{Cl})$ bands were reported respectively at 332 and $293 \mathrm{~cm}^{-1}$ and at 330 and $287 \mathrm{~cm}^{-1}$. A weak band at $2420 \mathrm{~cm}^{-1}$ was assigned to a stretching $\mathrm{P}-\mathrm{H}$ vibration as observed for the two compounds described by Bandoli et al. (1982).

The authors are grateful to the Medical Research Council of Canada for financial support.

References

Bandoli, G., Clemente, D. A. \& Mazzi, U. (1976). J. Chem. Soc. Dalton Trans. pp. 125-130.
Bandoli, G., Clemente, D. A., Mazzi, U. \& Roncari, E. (1982). J. Chem. Soc. Dalton Trans. pp. 1381-1384.

Clarke, M. J. \& Podbielski, L. (1987). Coord. Chem Rev. 78, 253-331.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Mazzi, U., de Paoli, G., di Bernardo, P. \& Magon, L. (1976). J. Inorg. Nucl. Chem. 38, 721-725.

Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Pearstein, R. M., Davis, W. M., Jones, A. G. \& Davison, A. (1989). Inorg. Chem. 28, 3332-3334.

Rochon, F. D., Melanson, R. \& Kong, P. C. (1991). Can. J. Chem. In the press.
Sheldrick, G. M. (1981). SHELXTL. Nicolet SHELXTL Operations Manual. Revision 3. Nicolet XRD Corporation, Cupertino, California, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, extra bond distances and angles in (III), bond distances and angles of H atoms and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53597 (64 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

